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Abstract— This paper presents a technique for detection and classification of short duration voltage variations 
including voltage sag, swell and interruption. The detection technique is based on envelope construction using 
Hilbert transform and classification using artificial neural network. The performance of the classifier is examined 
over several cases of synthetic voltage variation disturbances. Moreover, the performance of the classifier is tested 
on a simple distribution system subjected to a single-line-ground fault. The beginning and ending of the 
disturbance are also estimated. The simulation results show the robust capability of the proposed technique to 
accurately and rapidly classify voltage variation events. 
 
Keywords— Artificial neural network, Envelope detection, Hilbert transform, Power quality, Voltage variations.  
 

I. INTRODUCTION 

Voltage variations are mainly caused by switching on/off of heavy loads such as motors and 
faults on the power system. Voltage sag/swell can cause a serious damage to sensitive loads 
and interruption of power systems. Technical surveys have shown that voltage sags and swells 
are the most dominant power quality (PQ) problem [1], [2]. Voltage variations including 
voltage sag (dip), swell and interruption are usually characterized by their magnitudes and 
durations. Voltage sag is defined as a decrease between 0.1 and 0.9 per unit (pu) in rms 
voltage or current, whereas voltage swell is defined as an increase between 1.1 pu and 1.8 pu 
in rms voltage or current at the power frequency for durations from 0.5 cycle to 1min. An 
interruption occurs when the supply voltage or load current falls to a value less than 0.1 pu for 
a time interval less than 1min [1], [2]. 
Mitigation techniques such as Dynamic Voltage Restorer (DVR) and Distribution Static 
Compensator (DSTATCOM) have been developed to overcome voltage variation problems. 
[3]-[5]. However, before any mitigation is applied, the voltage variation should be detected. 
Accordingly, several signal processing techniques have been developed for the detection and 
classification of voltage variations. Traditionally, RMS, Peak Detection and DFT have been 
applied [6], [7]. More advanced signal processing techniques based on Wavelet transform 
(WT), Hilbert transform (HT) and S-Transform combined with artificial neural networks 
(ANN) have been investigated for voltage variation detection and classification [8]-[16]. 
Using the properties of these transforms and the features of the distorted voltage signal along 
with ANN scheme, it is possible to extract features from the distorted signal and determine 
the type of voltage variations. 
This paper aims to develop a simple yet powerful technique for fast voltage variation 
detection and classification by tracking the variation of the envelope of the voltage signal in 
real time. Envelope extraction combined with advanced signal processing techniques has been 
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used for voltage flicker detection [17]-[20]. 
The paper is organized as follows. Section II presents the concepts of voltage envelope 
extraction using HT and voltage variation classification using ANN. In section III, training 
and testing of the ANN based classifier is discussed. In Section IV, simulation results of a 
case study are illustrated. Finally, Section V concludes the work presented in the paper. 

II. ENVELOPE DETECTION AND CLASSIFICATION SCHEME 

In this work an efficient combined HT-ANN based technique for voltage variation detection 
based on signal envelope extraction using HT and classification using ANN is proposed. A 
schematic diagram of the proposed detection and classification scheme of voltage variations is 
shown in Fig. 1. The proposed scheme stores a full-cycle of the voltage envelope samples and 
feeds them in series to the proposed ANN classifier. When a new input sample arrives, the 
oldest sample is discarded. The ANN classifier produces one output with four states: -1 (sag) 
or 0 (interruption) or 1 (swell) or 0.5 (normal). The input signal v(t) is processed by anti-
aliasing analog low-pass filter to remove high-frequency components and noise. The filtered 
continuous signal is then converted to discrete-time series v(k) using an A-D converter by 
sampling the signal at a specific sampling frequency fs. The digitized signal vk is then 
processed by HT to obtain its Hilbert transform vH(k). The instantaneous envelope of v(k) is 
extracted by computing the modulus |y(k)|. 

 

 
 

Fig. 1. Voltage variation detection and classification schematic diagram 
 

A. Envelope Extraction Using Hilbert Transform 

Hilbert transform is used in signal processing to construct the signal envelope by calculating 
the analytical representation of the continuous-time signal [18]. For a real-valued discrete 
sinusoidal voltage signal v(t), the analytic signal y(t) is defined as: 

y(t)= v(t)+ j H(v(t))                                                                                                              (1) 
 
where H(v(t)) denotes the HT of v(t). If the Fourier transform of v(t), V(ω)= F(v(t)) is known, 
the Fourier transform VH(ω)= F(vH(t)) can be obtained as: 
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By calculating the inverse Fourier transform of VH(ω), vH(t) can be obtained. 
For a single-frequency sinusoidal signal, v(t)= cos(ωt), vH(t)= sin(ωt). If v(t)= sin(ωt), then 
vH(t)= -cos(ωt). Subsequently, the envelope of the signal v(t) can be calculated by computing 
the modulus |y(k)| as given by (3): 
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Similarly, for a discrete-time voltage signal, the instantaneous envelope of v(k) can be defined 
as: 

22 )()()( kvkvky H+=  
 

B. Neural Network Classifier 

Multilayer feedforward ANNs have been successfully used in solving many engineering 
problems such as function approximation, pattern recognition and classification and nonlinear 
mapping by selecting the output that best represents an unknown input pattern [12]-[14], [19]. 
Basically, an ANN consists of an input layer, one or more hidden layer(s) and an output layer. 
The hidden and output layers consist of sets of neurons that are fully connected to the neurons 
in the next layer. The number of neurons and hidden layers is problem-dependent and can be 
determined by trial and error till a goal performance is achieved [21]. The input layer receives 
the samples of the input signal and directly passes the signal to the neurons in the hidden layer 
after being modified by some weight coefficients. The neurons in the hidden layer send their 
weighed output to the neurons of the output layer. The weights of links to the hidden and 
output layers are determined by a process called training or learning, where a set of input 
patterns is admitted to the ANN along with the target output patterns. The weights are 
adjusted by a process called back propagation (BP) until an error measure representing the 
difference between the target and the predicted output of the ANN is minimized. The BP 
algorithm is an iterative gradient descent algorithm that adapts the weights; and the error is 
calculated and propagated backwards from the output to the hidden layer to the input. Usually, 
the mean square error (MSE) is minimized. The individual pattern error Ep of pattern p is 
calculated: 
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where tk is the target (desired) output; and Ok is the actual output of the neural network. The 
error E for all patterns is obtained as the sum of all individual patterns errors: 
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In this work, the architecture of the proposed ANN consists of an input layer with one input, a 
hidden layer with 10 neurons and an output layer with one neuron as shown in Fig. 2. The 
ANN classifier produces one output with four states: -1 (sag) or 0 (interruption) or 1 (swell) 
or 0.5 (normal).  
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Fig. 2. Architecture of the proposed ANN classifier 
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The “tansigmoid” activation function has been used in both the hidden and output layers. The 
MATLAB levenberg-marquardt “trainlm” training algorithm has been used [22]. Upon 
completion of the training phase, the generalization capability of the proposed ANN classifier 
is examined using another set of testing input-output patterns which are different from the 
training input-output patterns. 

III. NEURAL NETWORK TRAINING AND TESTING 

A. Training Phase 

A synthetic 50-Hz sinusoidal signal of the form: 

v(t)= Asgcos(ωot)u(tosg-tfsg)+Aswcos(ωot)u(tosw-tfsw)+Aincos(ωot)u(toin-tfin) 
 
is generated for time duration of 26.7 seconds with multi levels of sag, swell and interruption 
disturbance events, where Asg, Asw and Ain are the amplitudes of the sag, swell and interruption 
events; tosg, tosw and toin are the beginning time of the sag, swell and interruption events; tfsg, tfsw 
and tfin are the ending time of the sag, swell and interruption events. 
The signal is sampled at a sampling rate of 600Hz, i.e. a sampling rate of 12 samples per 50-
Hz cycle. Accordingly, a total number of 16000 samples is generated for training the 
proposed ANN classifier. Random amplitudes between 0.1-0.9 pu, 1.1-1.8 pu and 0-0.1 pu are 
generated for voltage sag, swell and interruption signals as shown in Fig. 3. The envelope of 
the training voltage signal is extracted as shown in Fig. 4 for a part of the training signal 
(3500) samples with the corresponding target values (-1, 0, 0.5, 1). The envelope is smoothed 
using the MATLAB “smooth” function which is basically a moving average based on a low-
pass filter. 
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Fig. 3. Training voltage signal with multi-levels of sag, swell and interruption 

 
 

The training performance of the proposed ANN classifier for the 16000 training samples is 
depicted in Fig. 5. Based on the examination of the training results, it can be seen that the 
ANN classifier shows excellent performance. Both targets and actual ANN outputs match 
each other with a high degree of accuracy. The training accuracy is also assessed in terms of 
the percentage of correctly classified samples to the total number of training samples. For a 
1×10×1 ANN, an MSE of 0.0096 and training accuracy of 99.2% are achieved. Only 124 
samples out of 16000 were miss-classified. 
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Fig. 4. Smoothed training envelop, input and output target pattern 
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Fig. 5. Comparison between the target and ANN actual outputs 

 
 
 

B. Testing Phase 

The generalization capability of the proposed ANN classifier is examined using nine different 
input-output testing pattern sets of synthetic voltage signals. Each signal is constructed by 
embedding a short duration segment of sag, swell or interruption disturbance within a voltage 
signal of normal level. Three segments of 72%, 55% and 25% voltage sag levels, three 
segments of 170%, 140% and 120% voltage swell levels and three segments of 7%, 5% and 2% 
voltage interruption levels are generated as shown in Fig. 6-8. The numbers of samples, 
beginning and ending times and duration intervals of each disturbance event are tabulated in 
Tables 1-3. The simulation results for nine cases of voltage sag, swell and interruption are 
depicted in Fig. 6-8, respectively. The simulation results of the testing phase reveal that the 
high accuracy of detection and classification of the proposed ANN are satisfied over a wide 
range of voltage variations and durations. 
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Fig. 6. Comparison between target and ANN: a) actual outputs-72% voltage sag, b) actual outputs-55% voltage sag, 
c) actual outputs-25% voltage sag 
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Fig. 7. Comparison between target and ANN: a) actual outputs-170% voltage swell, b) actual outputs-140% 
voltage swell, c) actual outputs-120% voltage swell 
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Fig. 8. Comparison between target and ANN: a) actual outputs-7% voltage interruption, b) actual outputs-5% 
voltage interruption, c) actual outputs-2% voltage interruption 
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TABLE 1 
ANN CLASSIFICATION ACCURACY OF VOLTAGE SAG CASE 

Sag Level Item Target Actual Output %Accuracy 

72% 

Number of Samples 350 347 99.1 
Beginning Time (s) 0.250 0.243 97.3 
Ending Time (s) 0.833 0.822 98.7 
Sag Duration (s) 0.583 0.579 99.3 

55% 

Number of Samples 350 361 96.9 
Beginning Time (s) 0.250 0.243 97.3 
Ending Time (s) 0.833 0.845 98.6 
Sag Duration (s) 0.583 0.602 96.7 

25% 

Number of Samples 400 407 98.3 
Beginning Time (s) 0.333 0.333 100 
Ending Time (s) 1.000 1.008 99.2 
Sag Duration (s) 0.667 0.675 99.2 

 
TABLE 2 

ANN CLASSIFICATION ACCURACY OF VOLTAGE SWELL CASES 
Swell Level Item Target Actual Output %Accuracy 

170% 

Number of Samples 150 153 98.0 
Beginning Time (s) 0.416 0.415 99.8 
Ending Time (s) 0.667 0.670 99.7 
Sag Duration (s) 0.250 0.255 98.0 

140% 

Number of Samples 150 154 98.0 
Beginning Time (s) 0.416 0.415 99.8 
Ending Time (s) 0.667 0.672 99.3 
Sag Duration (s) 0.250 0.257 97.2 

120% 

Number of Samples 500 503 99.4 
Beginning Time (s) 0.500 0.500 100 
Ending Time (s) 1.333 1.338 99.6 
Sag Duration (s) 0.833 0.838 99.4 

 
TABLE 3 

ANN CLASSIFICATION ACCURACY OF VOLTAGE INTERRUPTION CASES 
Interruption Level Item Target Actual Output %Accuracy 

7% 

Number of Samples 450 454 99.1 
Beginning Time (s) 0.416 0.413 99.4 
Ending Time (s) 1.166 1.17 99.3 
Sag Duration (s) 0.75 0.757 99.3 

5% 

Number of Samples 250 252 99.2 
Beginning Time (s) 0.333 0.331 99.4 
Ending Time (s) 0.750 0.755 99.3 
Sag Duration (s) 0.417 0.424 98.3 

2% 

Number of Samples 250 252 99.2 
Beginning Time (s) 0.333 0.331 99.4 
Ending Time (s) 0.750 0.755 99.3 
Sag Duration (s) 0.417 0.424 98.3 

IV. SIMULATION RESULTS 

In this section, the detection and classification performance of the proposed method for a 
voltage variation event is simulated for a single-line-ground fault (SLGF) disturbance on 
phase A of a simple 33/0.4kV distribution system as shown in Fig. 9. The fault is initiated at 
t=0.4s and cleared after 0.4s. The time-oscilligrams of the three phase voltages A, B and C are 
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shown in Fig. 10, where a voltage interruption appears on phase A compared with 173% 
voltage swell in phases B and C, respectively. 
 

 

  
Fig. 9. Simulation of a SLGF on a distribution system 

 
 
 
 

 
 

Fig. 10. Time-oscilligrams of phases A, B and C for SLGF 
 
 
 

The three oscilligrams are introduced to the proposed voltage envelope detection-ANN 
classification scheme. The results of classification simulations are illustrated in Fig. 11a, 11b 
and 11c and Table 4. Simulation results demonstrate the excellent performance of the 
proposed ANN classifier in detecting and classifying the voltage variation type; it as well 
estimates time durations with an average accuracy of 98%. 
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Fig. 11. a) Time-oscilligrams of phase A for SLGF on phase A, b) voltage swell-oscilligram of phase B for SLGF 
on phase A, c) voltage swell-oscilligram of phase C for SLGF on phase A 
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TABLE 4 
ANN CLASSIFICATION ACCURACY OF VOLTAGE VARIATIONS FOR SLGF ON PHASE A 

Event Item Target Actual Output %Accuracy 

Phase A 
0% 

Interruption 

Number of Samples 240 249 96.3 
Beginning Time (s) 0.400 0.401 99.9 
Ending Time (s) 0.800 0.816 98.0 
Sag Duration (s) 0.400 0.415 96.3 

Phase B 
173% 
Swell 

Number of Samples 240 245 97.9 
Beginning Time (s) 0.400 0.403 99.3 
Ending Time (s) 0.800 0.812 98.5 
Sag Duration (s) 0.400 0.409 97.75 

Phase C 
173% 
Swell 

Number of Samples 240 245 97.9 
Beginning Time (s) 0.400 0.403 99.3 
Ending Time (s) 0.800 0.812 98.5 
Sag Duration (s) 0.400 0.409 97.8 

V. CONCLUSION 

In this paper, an efficient envelope-ANN based technique for detection and classification of 
sag, swell or interruption voltage variations along with their time durations is developed. The 
envelope of the signal is developed using HT. A feed forward ANN with BP training is also 
developed for the classification of the voltage variation. The proposed ANN classifier consists 
of one input, 10 hidden neurons and one output neuron. Computer simulations of the training 
phase have shown high classification accuracy up to 99.2%. Likewise, high accuracy up to 
98.6% has been achieved for several cases of voltage variations in the testing phase. The 
simulation results reveal that the proposed envelope detection-ANN based classifier technique 
provides a powerful technique for fast and effective classification of voltage variations and 
estimation of the beginning, ending and duration times of the voltage variation. 
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